File: //usr/local/lib/python3.10/dist-packages/langsmith/evaluation/__pycache__/_arunner.cpython-310.pyc
o
���g�� � @ sb d Z ddlmZ ddlZddlmZ ddlZddlZddl Z ddl
Z
ddlmZm
Z
mZmZmZmZmZmZmZmZmZmZmZmZ ddlZddlmZ ddlmZmZ ddlmZ ddlm Z! dd l"m#Z$ dd
l%m&Z& ddl'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z: ddl;m<Z<m=Z=m>Z>m?Z? er�ddl@ZAdd
lBmCZC eAjDZDne
ZDe�EeF�ZGeeeHgeeH f eeHeHgeeH f f ZI dXdYd,d-�ZJ . dZd[d1d2�ZK d\d]d5d6�ZLG d7d8� d8e-�ZMG d9d+� d+�ZN .d^d_dDdE�ZOd`dGdH�ZPd.dI�dadKdL�ZQedM�ZRdbdQdR�ZSdcdVdW�ZTdS )dzV2 Evaluation Interface.� )�annotationsN)�
TYPE_CHECKING�Any�
AsyncIterable�
AsyncIterator� Awaitable�Callable�Dict�Iterable�List�Optional�Sequence�TypeVar�Union�cast)�run_helpers)� run_trees�schemas)r )�utils)�_aiter)�
_warn_once)�AEVALUATOR_T�DATA_T�EVALUATOR_T�ExperimentResultRow�_evaluators_include_attachments�_ExperimentManagerMixin�_extract_feedback_keys�_ForwardResults�_include_attachments�_is_langchain_runnable�_load_examples_map�_load_experiment�
_load_tqdm�_load_traces�
_resolve_data�_resolve_evaluators�_resolve_experiment�
_to_pandas�_wrap_summary_evaluators)�SUMMARY_EVALUATOR_T�EvaluationResult�EvaluationResults�RunEvaluator)�Runnable� T�data�NUnion[DATA_T, AsyncIterable[schemas.Example], Iterable[schemas.Example], None]�
evaluators�4Optional[Sequence[Union[EVALUATOR_T, AEVALUATOR_T]]]�summary_evaluators�'Optional[Sequence[SUMMARY_EVALUATOR_T]]�metadata�Optional[dict]�experiment_prefix�
Optional[str]�description�max_concurrency�
Optional[int]�num_repetitions�int�client�Optional[langsmith.Client]�blocking�bool�
experiment�6Optional[Union[schemas.TracerSession, str, uuid.UUID]]�upload_results�target�VUnion[ATARGET_T, AsyncIterable[dict], Runnable, str, uuid.UUID, schemas.TracerSession]�kwargsr �return�AsyncExperimentResultsc
� sb �t | ttjtjf�r]|dkt|�| t|�t|�d�}t|�� �r5dt dd� |�
� D ��� d�}t|��t | ttjf�r?| n| j}t
�d|� d�� t| f||||| |
d �|
��I d
H S t | tt f�rjd}t|��|
rvd|
� d
�}t|��|s~d}t|��|r�|r�d|� d|� �}t|��|s�td� t
�d| � d�� t| ||||||||| |
||d�
I d
H S )a% Evaluate an async target system on a given dataset.
Args:
target (AsyncCallable[[dict], dict] | AsyncIterable[dict] | Runnable | EXPERIMENT_T | Tuple[EXPERIMENT_T, EXPERIMENT_T]):
The target system or experiment(s) to evaluate. Can be an async function
that takes a dict and returns a dict, a langchain Runnable, an
existing experiment ID, or a two-tuple of experiment IDs.
data (Union[DATA_T, AsyncIterable[schemas.Example]]): The dataset to evaluate on. Can be a dataset name, a list of
examples, an async generator of examples, or an async iterable of examples.
evaluators (Optional[Sequence[EVALUATOR_T]]): A list of evaluators to run
on each example. Defaults to None.
summary_evaluators (Optional[Sequence[SUMMARY_EVALUATOR_T]]): A list of summary
evaluators to run on the entire dataset. Defaults to None.
metadata (Optional[dict]): Metadata to attach to the experiment.
Defaults to None.
experiment_prefix (Optional[str]): A prefix to provide for your experiment name.
Defaults to None.
description (Optional[str]): A description of the experiment.
max_concurrency (int | None): The maximum number of concurrent
evaluations to run. If None then no limit is set. If 0 then no concurrency.
Defaults to 0.
num_repetitions (int): The number of times to run the evaluation.
Each item in the dataset will be run and evaluated this many times.
Defaults to 1.
client (Optional[langsmith.Client]): The LangSmith client to use.
Defaults to None.
blocking (bool): Whether to block until the evaluation is complete.
Defaults to True.
experiment (Optional[schemas.TracerSession]): An existing experiment to
extend. If provided, experiment_prefix is ignored. For advanced
usage only.
load_nested: Whether to load all child runs for the experiment.
Default is to only load the top-level root runs. Should only be specified
when evaluating an existing experiment.
Returns:
AsyncIterator[ExperimentResultRow]: An async iterator over the experiment results.
Environment:
- LANGSMITH_TEST_CACHE: If set, API calls will be cached to disk to save time and
cost during testing. Recommended to commit the cache files to your repository
for faster CI/CD runs.
Requires the 'langsmith[vcr]' package to be installed.
Examples:
>>> from typing import Sequence
>>> from langsmith import Client, aevaluate
>>> from langsmith.schemas import Example, Run
>>> client = Client()
>>> dataset = client.clone_public_dataset(
... "https://smith.langchain.com/public/419dcab2-1d66-4b94-8901-0357ead390df/d"
... )
>>> dataset_name = "Evaluate Examples"
Basic usage:
>>> def accuracy(run: Run, example: Example):
... # Row-level evaluator for accuracy.
... pred = run.outputs["output"]
... expected = example.outputs["answer"]
... return {"score": expected.lower() == pred.lower()}
>>> def precision(runs: Sequence[Run], examples: Sequence[Example]):
... # Experiment-level evaluator for precision.
... # TP / (TP + FP)
... predictions = [run.outputs["output"].lower() for run in runs]
... expected = [example.outputs["answer"].lower() for example in examples]
... # yes and no are the only possible answers
... tp = sum([p == e for p, e in zip(predictions, expected) if p == "yes"])
... fp = sum([p == "yes" and e == "no" for p, e in zip(predictions, expected)])
... return {"score": tp / (tp + fp)}
>>> import asyncio
>>> async def apredict(inputs: dict) -> dict:
... # This can be any async function or just an API call to your app.
... await asyncio.sleep(0.1)
... return {"output": "Yes"}
>>> results = asyncio.run(
... aevaluate(
... apredict,
... data=dataset_name,
... evaluators=[accuracy],
... summary_evaluators=[precision],
... experiment_prefix="My Experiment",
... description="Evaluate the accuracy of the model asynchronously.",
... metadata={
... "my-prompt-version": "abcd-1234",
... },
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
Evaluating over only a subset of the examples using an async generator:
>>> async def example_generator():
... examples = client.list_examples(dataset_name=dataset_name, limit=5)
... for example in examples:
... yield example
>>> results = asyncio.run(
... aevaluate(
... apredict,
... data=example_generator(),
... evaluators=[accuracy],
... summary_evaluators=[precision],
... experiment_prefix="My Subset Experiment",
... description="Evaluate a subset of examples asynchronously.",
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
Streaming each prediction to more easily + eagerly debug.
>>> results = asyncio.run(
... aevaluate(
... apredict,
... data=dataset_name,
... evaluators=[accuracy],
... summary_evaluators=[precision],
... experiment_prefix="My Streaming Experiment",
... description="Streaming predictions for debugging.",
... blocking=False,
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
>>> async def aenumerate(iterable):
... async for elem in iterable:
... print(elem)
>>> asyncio.run(aenumerate(results))
Running without concurrency:
>>> results = asyncio.run(
... aevaluate(
... apredict,
... data=dataset_name,
... evaluators=[accuracy],
... summary_evaluators=[precision],
... experiment_prefix="My Experiment Without Concurrency",
... description="This was run without concurrency.",
... max_concurrency=0,
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
Using Async evaluators:
>>> async def helpfulness(run: Run, example: Example):
... # Row-level evaluator for helpfulness.
... await asyncio.sleep(5) # Replace with your LLM API call
... return {"score": run.outputs["output"] == "Yes"}
>>> results = asyncio.run(
... aevaluate(
... apredict,
... data=dataset_name,
... evaluators=[helpfulness],
... summary_evaluators=[precision],
... experiment_prefix="My Helpful Experiment",
... description="Applying async evaluators example.",
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
.. versionchanged:: 0.2.0
'max_concurrency' default updated from None (no limit on concurrency)
to 0 (no concurrency at all).
r/ )r= rC rE r8 r0 zReceived invalid arguments. c s s � | ] \}}|r|V qd S �N� )�.0�k�vrL rL �H/usr/local/lib/python3.10/dist-packages/langsmith/evaluation/_arunner.py� <genexpr> � � zaevaluate.<locals>.<genexpr>z? should not be specified when target is an existing experiment.z,Running evaluation over existing experiment z...)r2 r4 r6 r; r? rA Nz�Running a comparison of two existing experiments asynchronously is not currently supported. Please use the `evaluate()` method instead and make sure that your evaluators are defined as synchronous functions.zReceived unsupported arguments zC. These arguments are not supported when creating a new experiment.zDMust specify 'data' when running evaluations over a target function.zeExpected at most one of 'experiment' or 'experiment_prefix', but both were provided. Got: experiment=z, experiment_prefix=z&'upload_results' parameter is in beta.z&Running evaluation over target system )r0 r2 r4 r6 r8 r: r; r= r? rA rC rE )�
isinstance�str�uuid�UUIDr �
TracerSessionrB �any�values�tuple�items�
ValueError�id�logger�debug�aevaluate_existing�listr �
_aevaluate)rF r0 r2 r4 r6 r8 r: r; r= r? rA rC rE rH �invalid_args�msg� target_idrL rL rP � aevaluateN s� � @������
�
�����rf F�load_nested�,Union[str, uuid.UUID, schemas.TracerSession]c � s� �|pt �� }t| tj�r| n t�t| |�I dH }tjt| ||d�I dH } t�t ||�I dH � � fdd�| D �}
t
| |
|||||||d� I dH S )a� Evaluate existing experiment runs asynchronously.
Args:
experiment (Union[str, uuid.UUID]): The identifier of the experiment to evaluate.
evaluators (Optional[Sequence[EVALUATOR_T]]): Optional sequence of evaluators to use for individual run evaluation.
summary_evaluators (Optional[Sequence[SUMMARY_EVALUATOR_T]]): Optional sequence of evaluators
to apply over the entire dataset.
metadata (Optional[dict]): Optional metadata to include in the evaluation results.
max_concurrency (int | None): The maximum number of concurrent
evaluations to run. If None then no limit is set. If 0 then no concurrency.
Defaults to 0.
client (Optional[langsmith.Client]): Optional Langsmith client to use for evaluation.
load_nested: Whether to load all child runs for the experiment.
Default is to only load the top-level root runs.
blocking (bool): Whether to block until evaluation is complete.
Returns:
AsyncIterator[ExperimentResultRow]: An async iterator over the experiment results.
Examples:
Define your evaluators
>>> from typing import Sequence
>>> from langsmith.schemas import Example, Run
>>> def accuracy(run: Run, example: Example):
... # Row-level evaluator for accuracy.
... pred = run.outputs["output"]
... expected = example.outputs["answer"]
... return {"score": expected.lower() == pred.lower()}
>>> def precision(runs: Sequence[Run], examples: Sequence[Example]):
... # Experiment-level evaluator for precision.
... # TP / (TP + FP)
... predictions = [run.outputs["output"].lower() for run in runs]
... expected = [example.outputs["answer"].lower() for example in examples]
... # yes and no are the only possible answers
... tp = sum([p == e for p, e in zip(predictions, expected) if p == "yes"])
... fp = sum([p == "yes" and e == "no" for p, e in zip(predictions, expected)])
... return {"score": tp / (tp + fp)}
Load the experiment and run the evaluation.
>>> from langsmith import aevaluate, aevaluate_existing
>>> dataset_name = "Evaluate Examples"
>>> async def apredict(inputs: dict) -> dict:
... # This can be any async function or just an API call to your app.
... await asyncio.sleep(0.1)
... return {"output": "Yes"}
>>> # First run inference on the dataset
... results = asyncio.run(
... aevaluate(
... apredict,
... data=dataset_name,
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
Then evaluate the results
>>> experiment_name = "My Experiment:64e6e91" # Or manually specify
>>> results = asyncio.run(
... aevaluate_existing(
... experiment_name,
... evaluators=[accuracy],
... summary_evaluators=[precision],
... )
... ) # doctest: +ELLIPSIS
View the evaluation results for experiment:...
N)rg c s g | ]}� |j �qS rL )�reference_example_id)rM �run��data_maprL rP �
<listcomp>� s z&aevaluate_existing.<locals>.<listcomp>)r0 r2 r4 r6 r; r? rA rC )r �get_cached_clientrS r rW �
aitertools�
aio_to_threadr"