File: //usr/local/lib/python3.10/dist-packages/tiktoken/load.py
from __future__ import annotations
import base64
import hashlib
import os
def read_file(blobpath: str) -> bytes:
if not blobpath.startswith("http://") and not blobpath.startswith("https://"):
try:
import blobfile
except ImportError as e:
raise ImportError(
"blobfile is not installed. Please install it by running `pip install blobfile`."
) from e
with blobfile.BlobFile(blobpath, "rb") as f:
return f.read()
# avoiding blobfile for public files helps avoid auth issues, like MFA prompts
import requests
resp = requests.get(blobpath)
resp.raise_for_status()
return resp.content
def check_hash(data: bytes, expected_hash: str) -> bool:
actual_hash = hashlib.sha256(data).hexdigest()
return actual_hash == expected_hash
def read_file_cached(blobpath: str, expected_hash: str | None = None) -> bytes:
user_specified_cache = True
if "TIKTOKEN_CACHE_DIR" in os.environ:
cache_dir = os.environ["TIKTOKEN_CACHE_DIR"]
elif "DATA_GYM_CACHE_DIR" in os.environ:
cache_dir = os.environ["DATA_GYM_CACHE_DIR"]
else:
import tempfile
cache_dir = os.path.join(tempfile.gettempdir(), "data-gym-cache")
user_specified_cache = False
if cache_dir == "":
# disable caching
return read_file(blobpath)
cache_key = hashlib.sha1(blobpath.encode()).hexdigest()
cache_path = os.path.join(cache_dir, cache_key)
if os.path.exists(cache_path):
with open(cache_path, "rb") as f:
data = f.read()
if expected_hash is None or check_hash(data, expected_hash):
return data
# the cached file does not match the hash, remove it and re-fetch
try:
os.remove(cache_path)
except OSError:
pass
contents = read_file(blobpath)
if expected_hash and not check_hash(contents, expected_hash):
raise ValueError(
f"Hash mismatch for data downloaded from {blobpath} (expected {expected_hash}). "
f"This may indicate a corrupted download. Please try again."
)
import uuid
try:
os.makedirs(cache_dir, exist_ok=True)
tmp_filename = cache_path + "." + str(uuid.uuid4()) + ".tmp"
with open(tmp_filename, "wb") as f:
f.write(contents)
os.rename(tmp_filename, cache_path)
except OSError:
# don't raise if we can't write to the default cache, e.g. issue #75
if user_specified_cache:
raise
return contents
def data_gym_to_mergeable_bpe_ranks(
vocab_bpe_file: str,
encoder_json_file: str,
vocab_bpe_hash: str | None = None,
encoder_json_hash: str | None = None,
) -> dict[bytes, int]:
# NB: do not add caching to this function
rank_to_intbyte = [b for b in range(2**8) if chr(b).isprintable() and chr(b) != " "]
data_gym_byte_to_byte = {chr(b): b for b in rank_to_intbyte}
n = 0
for b in range(2**8):
if b not in rank_to_intbyte:
rank_to_intbyte.append(b)
data_gym_byte_to_byte[chr(2**8 + n)] = b
n += 1
assert len(rank_to_intbyte) == 2**8
# vocab_bpe contains the merges along with associated ranks
vocab_bpe_contents = read_file_cached(vocab_bpe_file, vocab_bpe_hash).decode()
bpe_merges = [tuple(merge_str.split()) for merge_str in vocab_bpe_contents.split("\n")[1:-1]]
def decode_data_gym(value: str) -> bytes:
return bytes(data_gym_byte_to_byte[b] for b in value)
# add the single byte tokens
bpe_ranks = {bytes([b]): i for i, b in enumerate(rank_to_intbyte)}
# add the merged tokens
n = len(bpe_ranks)
for first, second in bpe_merges:
bpe_ranks[decode_data_gym(first) + decode_data_gym(second)] = n
n += 1
import json
# check that the encoder file matches the merges file
# this sanity check is important since tiktoken assumes that ranks are ordered the same
# as merge priority
encoder_json = json.loads(read_file_cached(encoder_json_file, encoder_json_hash))
encoder_json_loaded = {decode_data_gym(k): v for k, v in encoder_json.items()}
# drop these two special tokens if present, since they're not mergeable bpe tokens
encoder_json_loaded.pop(b"<|endoftext|>", None)
encoder_json_loaded.pop(b"<|startoftext|>", None)
assert bpe_ranks == encoder_json_loaded
return bpe_ranks
def dump_tiktoken_bpe(bpe_ranks: dict[bytes, int], tiktoken_bpe_file: str) -> None:
try:
import blobfile
except ImportError as e:
raise ImportError(
"blobfile is not installed. Please install it by running `pip install blobfile`."
) from e
with blobfile.BlobFile(tiktoken_bpe_file, "wb") as f:
for token, rank in sorted(bpe_ranks.items(), key=lambda x: x[1]):
f.write(base64.b64encode(token) + b" " + str(rank).encode() + b"\n")
def load_tiktoken_bpe(tiktoken_bpe_file: str, expected_hash: str | None = None) -> dict[bytes, int]:
# NB: do not add caching to this function
contents = read_file_cached(tiktoken_bpe_file, expected_hash)
ret = {}
for line in contents.splitlines():
if not line:
continue
try:
token, rank = line.split()
ret[base64.b64decode(token)] = int(rank)
except Exception as e:
raise ValueError(f"Error parsing line {line!r} in {tiktoken_bpe_file}") from e
return ret