HEX
Server: Apache/2.4.52 (Ubuntu)
System: Linux spn-python 5.15.0-89-generic #99-Ubuntu SMP Mon Oct 30 20:42:41 UTC 2023 x86_64
User: arjun (1000)
PHP: 8.1.2-1ubuntu2.20
Disabled: NONE
Upload Files
File: //proc/1233/root/usr/local/lib/python3.10/dist-packages/jiter-0.8.2.dist-info/METADATA
Metadata-Version: 2.4
Name: jiter
Version: 0.8.2
Classifier: Development Status :: 4 - Beta
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Information Technology
Classifier: Intended Audience :: System Administrators
Classifier: License :: OSI Approved :: MIT License
Classifier: Operating System :: Unix
Classifier: Operating System :: POSIX :: Linux
Classifier: Environment :: Console
Classifier: Environment :: MacOS X
Classifier: Topic :: File Formats :: JSON
Classifier: Framework :: Pydantic :: 2
Summary: Fast iterable JSON parser.
Keywords: JSON,parsing,deserialization,iter
Home-Page: https://github.com/pydantic/jiter/
Author: Samuel Colvin <samuel@pydantic.dev>
Author-email: Samuel Colvin <s@muelcolvin.com>
License: MIT
Requires-Python: >=3.8
Description-Content-Type: text/markdown; charset=UTF-8; variant=GFM
Project-URL: Source Code, https://github.com/pydantic/jiter/

# jiter

[![CI](https://github.com/pydantic/jiter/workflows/CI/badge.svg?event=push)](https://github.com/pydantic/jiter/actions?query=event%3Apush+branch%3Amain+workflow%3ACI)
[![pypi](https://img.shields.io/pypi/v/jiter.svg)](https://pypi.python.org/pypi/jiter)
[![versions](https://img.shields.io/pypi/pyversions/jiter.svg)](https://github.com/pydantic/jiter)
[![license](https://img.shields.io/github/license/pydantic/jiter.svg)](https://github.com/pydantic/jiter/blob/main/LICENSE)

This is a standalone version of the JSON parser used in `pydantic-core`. The recommendation is to only use this package directly if you do not use `pydantic`.

The API is extremely minimal:

```python
def from_json(
    json_data: bytes,
    /,
    *,
    allow_inf_nan: bool = True,
    cache_mode: Literal[True, False, "all", "keys", "none"] = "all",
    partial_mode: Literal[True, False, "off", "on", "trailing-strings"] = False,
    catch_duplicate_keys: bool = False,
    float_mode: Literal["float", "decimal", "lossless-float"] = False,
) -> Any:
    """
    Parse input bytes into a JSON object.

    Arguments:
        json_data: The JSON data to parse
        allow_inf_nan: Whether to allow infinity (`Infinity` an `-Infinity`) and `NaN` values to float fields.
            Defaults to True.
        cache_mode: cache Python strings to improve performance at the cost of some memory usage
            - True / 'all' - cache all strings
            - 'keys' - cache only object keys
            - False / 'none' - cache nothing
        partial_mode: How to handle incomplete strings:
            - False / 'off' - raise an exception if the input is incomplete
            - True / 'on' - allow incomplete JSON but discard the last string if it is incomplete
            - 'trailing-strings' - allow incomplete JSON, and include the last incomplete string in the output
        catch_duplicate_keys: if True, raise an exception if objects contain the same key multiple times
        float_mode: How to return floats: as a `float`, `Decimal` or `LosslessFloat`

    Returns:
        Python object built from the JSON input.
    """

def cache_clear() -> None:
    """
    Reset the string cache.
    """

def cache_usage() -> int:
    """
    get the size of the string cache.

    Returns:
        Size of the string cache in bytes.
    """
```
## Examples

The main function provided by Jiter is `from_json()`, which accepts a bytes object containing JSON and returns a Python dictionary, list or other value.

```python
import jiter

json_data = b'{"name": "John", "age": 30}'
parsed_data = jiter.from_json(json_data)
print(parsed_data)  # Output: {'name': 'John', 'age': 30}
```

### Handling Partial JSON

Incomplete JSON objects can be parsed using the `partial_mode=` parameter.

```python
import jiter

partial_json = b'{"name": "John", "age": 30, "city": "New Yor'

# Raise error on incomplete JSON
try:
    jiter.from_json(partial_json, partial_mode=False)
except ValueError as e:
    print(f"Error: {e}")

# Parse incomplete JSON, discarding incomplete last field
result = jiter.from_json(partial_json, partial_mode=True)
print(result)  # Output: {'name': 'John', 'age': 30}

# Parse incomplete JSON, including incomplete last field
result = jiter.from_json(partial_json, partial_mode='trailing-strings')
print(result)  # Output: {'name': 'John', 'age': 30, 'city': 'New Yor'}
```

### Catching Duplicate Keys

The `catch_duplicate_keys=True` option can be used to raise a `ValueError` if an object contains duplicate keys.

```python
import jiter

json_with_dupes = b'{"foo": 1, "foo": 2}'

# Default behavior (last value wins)
result = jiter.from_json(json_with_dupes)
print(result)  # Output: {'foo': 2}

# Catch duplicate keys
try:
    jiter.from_json(json_with_dupes, catch_duplicate_keys=True)
except ValueError as e:
    print(f"Error: {e}")
```