HEX
Server: Apache/2.4.52 (Ubuntu)
System: Linux spn-python 5.15.0-89-generic #99-Ubuntu SMP Mon Oct 30 20:42:41 UTC 2023 x86_64
User: arjun (1000)
PHP: 8.1.2-1ubuntu2.20
Disabled: NONE
Upload Files
File: //home/arjun/projects/buyercall/node_modules/apexcharts/src/libs/Treemap-squared.js
/*
 * treemap-squarify.js - open source implementation of squarified treemaps
 *
 * Treemap Squared 0.5 - Treemap Charting library
 *
 * https://github.com/imranghory/treemap-squared/
 *
 * Copyright (c) 2012 Imran Ghory (imranghory@gmail.com)
 * Licensed under the MIT (http://www.opensource.org/licenses/mit-license.php) license.
 *
 *
 * Implementation of the squarify treemap algorithm described in:
 *
 * Bruls, Mark; Huizing, Kees; van Wijk, Jarke J. (2000), "Squarified treemaps"
 * in de Leeuw, W.; van Liere, R., Data Visualization 2000:
 * Proc. Joint Eurographics and IEEE TCVG Symp. on Visualization, Springer-Verlag, pp. 33–42.
 *
 * Paper is available online at: http://www.win.tue.nl/~vanwijk/stm.pdf
 *
 * The code in this file is completeley decoupled from the drawing code so it should be trivial
 * to port it to any other vector drawing library. Given an array of datapoints this library returns
 * an array of cartesian coordinates that represent the rectangles that make up the treemap.
 *
 * The library also supports multidimensional data (nested treemaps) and performs normalization on the data.
 *
 * See the README file for more details.
 */

window.TreemapSquared = {}
;(function() {
  'use strict'
  window.TreemapSquared.generate = (function() {
    function Container(xoffset, yoffset, width, height) {
      this.xoffset = xoffset // offset from the the top left hand corner
      this.yoffset = yoffset // ditto
      this.height = height
      this.width = width

      this.shortestEdge = function() {
        return Math.min(this.height, this.width)
      }

      // getCoordinates - for a row of boxes which we've placed
      //                  return an array of their cartesian coordinates
      this.getCoordinates = function(row) {
        let coordinates = []
        let subxoffset = this.xoffset,
          subyoffset = this.yoffset //our offset within the container
        let areawidth = sumArray(row) / this.height
        let areaheight = sumArray(row) / this.width
        let i

        if (this.width >= this.height) {
          for (i = 0; i < row.length; i++) {
            coordinates.push([
              subxoffset,
              subyoffset,
              subxoffset + areawidth,
              subyoffset + row[i] / areawidth
            ])
            subyoffset = subyoffset + row[i] / areawidth
          }
        } else {
          for (i = 0; i < row.length; i++) {
            coordinates.push([
              subxoffset,
              subyoffset,
              subxoffset + row[i] / areaheight,
              subyoffset + areaheight
            ])
            subxoffset = subxoffset + row[i] / areaheight
          }
        }
        return coordinates
      }

      // cutArea - once we've placed some boxes into an row we then need to identify the remaining area,
      //           this function takes the area of the boxes we've placed and calculates the location and
      //           dimensions of the remaining space and returns a container box defined by the remaining area
      this.cutArea = function(area) {
        let newcontainer

        if (this.width >= this.height) {
          let areawidth = area / this.height
          let newwidth = this.width - areawidth
          newcontainer = new Container(
            this.xoffset + areawidth,
            this.yoffset,
            newwidth,
            this.height
          )
        } else {
          let areaheight = area / this.width
          let newheight = this.height - areaheight
          newcontainer = new Container(
            this.xoffset,
            this.yoffset + areaheight,
            this.width,
            newheight
          )
        }
        return newcontainer
      }
    }

    // normalize - the Bruls algorithm assumes we're passing in areas that nicely fit into our
    //             container box, this method takes our raw data and normalizes the data values into
    //             area values so that this assumption is valid.
    function normalize(data, area) {
      let normalizeddata = []
      let sum = sumArray(data)
      let multiplier = area / sum
      let i

      for (i = 0; i < data.length; i++) {
        normalizeddata[i] = data[i] * multiplier
      }
      return normalizeddata
    }

    // treemapMultidimensional - takes multidimensional data (aka [[23,11],[11,32]] - nested array)
    //                           and recursively calls itself using treemapSingledimensional
    //                           to create a patchwork of treemaps and merge them
    function treemapMultidimensional(data, width, height, xoffset, yoffset) {
      xoffset = typeof xoffset === 'undefined' ? 0 : xoffset
      yoffset = typeof yoffset === 'undefined' ? 0 : yoffset

      let mergeddata = []
      let mergedtreemap
      let results = []
      let i

      if (isArray(data[0])) {
        // if we've got more dimensions of depth
        for (i = 0; i < data.length; i++) {
          mergeddata[i] = sumMultidimensionalArray(data[i])
        }
        mergedtreemap = treemapSingledimensional(
          mergeddata,
          width,
          height,
          xoffset,
          yoffset
        )

        for (i = 0; i < data.length; i++) {
          results.push(
            treemapMultidimensional(
              data[i],
              mergedtreemap[i][2] - mergedtreemap[i][0],
              mergedtreemap[i][3] - mergedtreemap[i][1],
              mergedtreemap[i][0],
              mergedtreemap[i][1]
            )
          )
        }
      } else {
        results = treemapSingledimensional(
          data,
          width,
          height,
          xoffset,
          yoffset
        )
      }
      return results
    }

    // treemapSingledimensional - simple wrapper around squarify
    function treemapSingledimensional(data, width, height, xoffset, yoffset) {
      xoffset = typeof xoffset === 'undefined' ? 0 : xoffset
      yoffset = typeof yoffset === 'undefined' ? 0 : yoffset

      let rawtreemap = squarify(
        normalize(data, width * height),
        [],
        new Container(xoffset, yoffset, width, height),
        []
      )
      return flattenTreemap(rawtreemap)
    }

    // flattenTreemap - squarify implementation returns an array of arrays of coordinates
    //                  because we have a new array everytime we switch to building a new row
    //                  this converts it into an array of coordinates.
    function flattenTreemap(rawtreemap) {
      let flattreemap = []
      let i, j

      for (i = 0; i < rawtreemap.length; i++) {
        for (j = 0; j < rawtreemap[i].length; j++) {
          flattreemap.push(rawtreemap[i][j])
        }
      }
      return flattreemap
    }

    // squarify  - as per the Bruls paper
    //             plus coordinates stack and containers so we get
    //             usable data out of it
    function squarify(data, currentrow, container, stack) {
      let length
      let nextdatapoint
      let newcontainer

      if (data.length === 0) {
        stack.push(container.getCoordinates(currentrow))
        return
      }

      length = container.shortestEdge()
      nextdatapoint = data[0]

      if (improvesRatio(currentrow, nextdatapoint, length)) {
        currentrow.push(nextdatapoint)
        squarify(data.slice(1), currentrow, container, stack)
      } else {
        newcontainer = container.cutArea(sumArray(currentrow), stack)
        stack.push(container.getCoordinates(currentrow))
        squarify(data, [], newcontainer, stack)
      }
      return stack
    }

    // improveRatio - implements the worse calculation and comparision as given in Bruls
    //                (note the error in the original paper; fixed here)
    function improvesRatio(currentrow, nextnode, length) {
      let newrow

      if (currentrow.length === 0) {
        return true
      }

      newrow = currentrow.slice()
      newrow.push(nextnode)

      let currentratio = calculateRatio(currentrow, length)
      let newratio = calculateRatio(newrow, length)

      // the pseudocode in the Bruls paper has the direction of the comparison
      // wrong, this is the correct one.
      return currentratio >= newratio
    }

    // calculateRatio - calculates the maximum width to height ratio of the
    //                  boxes in this row
    function calculateRatio(row, length) {
      let min = Math.min.apply(Math, row)
      let max = Math.max.apply(Math, row)
      let sum = sumArray(row)
      return Math.max(
        (Math.pow(length, 2) * max) / Math.pow(sum, 2),
        Math.pow(sum, 2) / (Math.pow(length, 2) * min)
      )
    }

    // isArray - checks if arr is an array
    function isArray(arr) {
      return arr && arr.constructor === Array
    }

    // sumArray - sums a single dimensional array
    function sumArray(arr) {
      let sum = 0
      let i

      for (i = 0; i < arr.length; i++) {
        sum += arr[i]
      }
      return sum
    }

    // sumMultidimensionalArray - sums the values in a nested array (aka [[0,1],[[2,3]]])
    function sumMultidimensionalArray(arr) {
      let i,
        total = 0

      if (isArray(arr[0])) {
        for (i = 0; i < arr.length; i++) {
          total += sumMultidimensionalArray(arr[i])
        }
      } else {
        total = sumArray(arr)
      }
      return total
    }

    return treemapMultidimensional
  })()
})()